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ABSTRACT
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Marine managers routinely use benthic habitat maps to make decisions about the ocean, its resources, and associated
human uses. Acoustic backscatter from multibeam echosounders (MBES) is often critical for developing these habitat
maps. Recent advances now allow MBES to collect backscatter at multiple acoustic frequencies. This type of data may
help researchers more accurately map benthic habitats and managers more confidently make decisions. However, new
research is needed quantifying how much multispectral backscatter improves the habitat characterization process and
identifying which management needs would benefit most from its collection. To begin answering these questions, a case
study was conducted opportunistically in Bedford Basin, Canada, with MBES bathymetry and backscatter collected at
100, 200, and 400-kHz frequencies. Underwater photos and boosted regression trees were used to characterize seven
dominant benthic habitats and calculate the relative importance of multispectral backscatter to the characterization
process. Response curves were generated to identify key relative frequency thresholds for differentiating among habitat
types. These results indicated that multispectral backscatter can enhance the discrimination of soft bottom by 17.4%,
hard bottom by 5.7%, and all habitats by 9.1%. Topographic information (e.g., depth) contributed the most to the hard-
bottom maps (51.8% 6 4.0), whereas multispectral backscatter contributed the most to the soft-bottom map (46.9%). The
100-kHz frequency was the most important frequency for all habitat types. These findings suggest that multispectral
backscatter maybe most useful to management applications focused on soft-bottom habitats. Single-frequency (i.e. 100
kHz) backscatter may be adequate for applications focused on hard bottom, because it only improved the models by a
small amount. Researchers and marine managers can start to use this information to decide a priori which backscatter
frequency (or frequencies) are best suited to support their research objectives, mapping needs, and management actions.

ADDITIONAL INDEX WORDS: Multispectral backscatter, acoustic backscatter, multibeam echosounders, MBES, 100
kHz, 200 kHz, 400 kHz, benthic habitats, benthic characterization, marine management.

INTRODUCTION
Marine managers routinely use benthic habitat maps to

make decisions about the seascape (Cogan et al., 2009). These

decisions can range from designating critical habitats that

support fisheries (Smith and McConnaughey, 2016), to siting

marine infrastructure (e.g., cables or wind turbines) (Multon,

2013), to shoreline protection and beach nourishment (Finkl,

Khalil, and Andrews, 1997; Finkl and Walker, 2005). In the

United States, marine managers at the National Oceanic and

Atmospheric Administration (NOAA) rely on baseline infor-

mation about the seafloor, including high-quality maps of

benthic habitats, to make informed decisions in support of

coastal economies and to address evolving marine uses of the

U.S. exclusive economic zone (NOAA, 2017, 2018). For

example, NOAA’s National Marine Fisheries Service uses

benthic habitat maps to manage productive and sustainable

fisheries under the Magnuson-Stevens Fishery Conservation

Act (NOAA, 2007). This act requires that managers protect

essential fish habitat, which is defined as the waters and hard/

soft substrates necessary for economically important fish to

spawn, breed, feed, and mature (Smith and McConnaughey,

2016).

Acoustic backscatter, particularly from multibeam echosound-

ers (MBESs), is often a critical piece of baseline information

needed by marine managers. Backscatter is critical because it is

needed to produce high-quality benthic habitat maps (Brown

and Blondel, 2009; Holliday, 2007; Smith and McConnaughey,

2016). Most MBES systems in use today collect backscatter using

only one acoustic frequency (Anderson et al., 2007; Brown et al.,

2011). However, recent technological advances now allow

MBES systems to collect backscatter at multiple acoustic

frequencies (i.e., multispectral backscatter). This multispec-

tral information can be collected by wide-band MBES
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systems (like the R2 Sonic 2026) or by multiple MBES

systems whose frequencies differ by one or more octaves

(Hughes-Clarke, 2015). The potential for multispectral

backscatter is exciting to the benthic habitat characteriza-

tion community because backscatter strength depends on the

size of the wavelength (i.e. frequency) in relation to the size of

the particles on the seafloor (i.e. roughness) (Ogilvy and

Merklinger, 1991). This relationship means that different

frequencies provide distinct information about seafloor

geology and benthic habitats. Specifically, lower acoustic

frequencies (e.g., 100 kHz) often penetrate deeper into softer

sediments on the seafloor, potentially detecting habitats that

higher frequencies cannot (Anderson et al., 2007; Cuff,

Anderson, and Devillers, 2009, Gaida et al., 2018). Converse-

ly, higher frequencies (e.g. 400 kHz) detect smaller features

on the seafloor, potentially detecting habitat features that

lower frequencies miss (Cuff, Anderson, and Devillers, 2009).

Combined, this new way of mapping the seafloor has the

potential to enhance the ability of the habitat characteriza-

tion community to discriminate among different bottom types

(Anderson et al., 2008; Hughes-Clarke, 2015) and develop

more robust and accurate maps of the seafloor.

To date, most research on multispectral backscatter has

focused on describing backscatter responses for different

frequencies, substrates, and grazing angles (da Cruz Peçanha,

2016; Hughes-Clarke, 2015; Kist, 2017), trying to derive

benthic habitats from multispectral backscatter (Cuff, Ander-

son, and Devillers, 2009; Kist, 2017; Gaida et al., 2018), or both.

These studies have shown that for soft sediments (e.g., sand),

backscatter strength often decreases as the frequency and

grazing angles decrease (Gaida et al., 2018; Hughes-Clarke,

2015). This means that in softer, finer sediments, lower

frequency backscatter (e.g., 100 kHz) may detect and map

surficial substrates that are not visible in higher frequency

backscatter (e.g., 400 kHz) (da Cruz Peçanha, 2016, Gaida et

al., 2018; Hughes-Clarke, 2015). This physical relationship was

the basis for testing different methods of creating benthic

habitat maps from multispectral backscatter on the Scotian

Shelf, Canada (Cuff, Anderson, and Devillers, 2009), in

Charleston Harbor, South Carolina (Kist, 2017), and in the

Bedford Basin, Canada (Gaida et al., 2018). Although these

studies helped advance the understanding of multispectral

backscatter, they did not investigate key questions that remain

about this type of data, including: (1) How much (%) does

multispectral backscatter improve the ability to characterize

benthic habitats? (2) Do some habitat classifications benefit

more than others? (3) How important is multispectral back-

scatter compared with other well-studied information about

the seafloor (e.g., depth, slope, rugosity, etc.)? (4) What relative

acoustic thresholds may be ecologically important and relevant

to management actions? These questions were the focus of this

study because they are critical for understanding not only the

utility of multispectral backscatter for habitat characteriza-

tion, but also in what situations its collection and processing is

worth the additional effort required (Hughes-Clarke, 2015).

Answers to the above questions will help researchers and

marine managers make more informed decisions about

whether to collect multispectral backscatter and, if so, where

and when its collection would benefit their project the most.

Understanding not only why but also when to use this mapping

tool is critical for resource managers and other benthic habitat

map users moving forward.

To answer these questions, a machine learning technique

was applied to a multispectral MBES dataset (i.e. at 100, 200,

and 400-kHz frequencies) collected in Bedford Basin, Nova

Scotia, Canada (Figure 1). This multispectral MBES dataset

was collected by researchers at Nova Scotia Community

College, QPS Canada, and R2 Sonic as a technology demon-

stration (Brown et al., 2017). It was used opportunistically as a

case study to better understand and quantify the mathematical

relationship among acoustic frequencies and benthic habitats

in the basin, including Rock, Cobble, Mud, Clams, Limpets,

Urchins, and uncolonized substrates. This information was the

focus of this study, and the influence of other environmental

conditions (e.g., tides), ecological mechanisms (e.g., predation),

and human activities (e.g., dredging) on the distribution of

benthic habitats in the basin were outside the scope of this

research.

Figure 1. Map of Bedford Basin, Nova Scotia, Canada. (Left) Depth surface (m) and (right) false color multispectral backscatter surface for Bedford Basin. The

false color surface depicts the 100, 200, and 400-kHz frequencies as the red, green, and blue channels, respectively. The circles denote the location of underwater

photos. These datasets were provided by R2 Sonic (2017).
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METHODS
Bedford Basin is a bowl-shaped area approximately 5 km

long by 3 km wide (Figure 1). It is open to the Atlantic Ocean

with tidal ranges around 1.5 m. Tidal waters flow in and out of

‘‘The Narrows,’’ located at its mouth to the southeast. Depths

in this area are approximately 14 m and drop off rapidly to

approximately 70 m. The area around the basin is largely

developed because it is the largest port in Atlantic Canada

(Natural Resources Canada, 2007). It is home to a variety of

industrial, military, and urban areas, with the cities of Halifax

to the SE, Burnside to the east, the Canadian Forces

Ammunition Depot to the north, and Bedford to the NW. The

basin’s importance as a hub of maritime activity also means it

has been well studied. Acoustic mapping, geological cores,

sediment grabs and remotely operated vehicle surveys have

been conducted in the basin to characterize the geology,

biology, and oceanography of the Basin (Courtney 1993; Fader,

Miller, and Pecore, 1991; Lawrence, 1989). Geochemistry

analyses were conducted on the sediment cores and grabs to

understand the sediment history and presence of contaminants

(Fader, Miller, and Pecore, 1991). This information was

combined to produce maps depicting the surficial geology and

geochemistry of Bedford Basin (Fader and Buckley 1995).

These maps show that gravel and rock are present in large

abundances closer to ‘‘The Narrows’’ but that sediments inside

Bedford Basin are primarily mud (LaHave Clay) (Fader,

Miller, and Pecore, 1991).

Description of Data Collection and Processing
Methods

The multispectral data and underwater photographs ana-

lyzed here were collected by researchers at the Nova Scotia

Community College, QPS Canada, and R2 Sonic, and were

provided courtesy of R2 Sonic (R2 Sonic, 2017). Underwater

photographs were collected at 34 sites with a SubC camera on

8–10 March 2016 and 7, 9, and 24 March 2017 (Brown et al.,

2017; R2 Sonic, 2017). A benthic expert visually interpreted

underwater photos at these sites according to the Coastal and

Marine Ecological Classification Standard (FGDC, 2012) to

annotate the presence and percent cover of four substrate types

(Rock, Cobble, Shell, and Mud) and eight biological cover types

(Algae, Anemones, Bare, Clams, Limpets, polychaete Worms,

Sponges, and Urchins).

The multispectral dataset was collected by the MV Eastcom

(12-m fiberglass survey vessel) with a pole-mounted R2Sonic

2026 on 20 April 2016 and 2 May 2017 (Brown et al., 2017,

2019). In total, 15 and 13 survey lines (respectively) were

collected mapping approximately 2 km2 of seafloor in depths

from 14 to approximately 70 m in the basin. The position and

attitude of the R2 2026 were recorded by a POS MV Wave

Master and dual Trimble GPS antennas. Sound velocity (SV)

was measured at the transducer head by a Valeport SVP probe,

and conductivity, temperature, and pressure (CTD) casts were

conducted periodically with an AML Base�X2. Outputs from

these sensors were integrated with the data from the R2 Sonic

2026 by QPS QINSy (QPS, 2018). Depths were corrected for

motion, sound velocity, and tides (with a tidal gauge at the

Bedford Institute of Oceanography) in QPS Qimera (QPS,

2018) and exported as 1 3 1 m GeoTIFF surface. Please see

Brown et al. (2017, 2019) for a full description of the data

acquisition parameters and processing specifications.

Backscatter snippets were collected simultaneously at 100,

200, and 400-kHz frequencies and were continuously moni-

tored for saturation (Brown et al., 2017). Backscatter snippets

were processed in QPS FMGT software (QPS, 2018) and

corrected for acoustic source levels, pulse lengths, receiver

sensitivity, beam patterns, spherical spreading and absorption,

time varying gains, and angular dependence from local seafloor

slopes (Hughes-Clarke et al., 2008). Absorption coefficients for

backscatter processing were calculated with the CTD data. The

exported backscatter snippet values were in decibels and

exported at the same spatial resolution as the bathymetry

(i.e. 1 3 1 m). These backscatter values were calibrated across

survey years using the guidelines published by the GeoHab

Backscatter Working Group (Lurton and Lamarche, 2015).

This process created normalized, relative backscatter surfaces

for each frequency. Although these surfaces were calibrated

with each other, the MBES systems were not calibrated

absolutely in the field. In situ absolute calibration requires

accounting for biases in several components of the MBES

system with targets of known acoustic responses (Brown et al.,

2015). This type of MBES backscatter calibration is rare

because it is time consuming, complex and subject to in-water

heterogeneities (Lurton and Lamarche, 2015). As a result, the

habitat mapping community widely uses and accepts relative

backscatter (calibrated across years or vessels) for seafloor

characterization (Lurton and Lamarche, 2015).

Description of Habitat Modeling Approach
Boosted regression trees were used to develop benthic

habitat predictions and maps in Bedford Basin and to

investigate the relative importance of multispectral backscat-

ter and key acoustic thresholds for characterizing different

habitat types. This modeling technique was chosen because it

has been shown to perform well compared with other

techniques (Elith et al., 2006), including generalized linear

models, generalized additive models, and multivariate adap-

tive regression splines, among others (De’ath, 2007; De’ath and

Fabricius, 2000; Elith, Leathwick, and Hastie, 2008). This

modeling technique also has diagnostic tools, which can be used

to quantify which environmental predictors (e.g., 100, 200, or

400-kHz backscatter) are relatively more important, and

identify environmental thresholds (e.g.,�5,�10,�15 dB) that

are useful for distinguishing among habitat types. These tools

were critical for answering the four research questions above.

Although this approach was tested on multispectral data here,

it has also been used to map benthic habitat successfully by

satellite imagery and single-frequency MBES data (Costa et al.,

2017; Kendall et al., 2017).

Developing Habitat Models and Predictions from
Multispectral Data

Three main steps were used to develop the benthic habitat

models and predictions for Bedford Basin (Figure 2). These

steps were conducted primarily in R software (R Core Team,

2015) with the dismo (Hijmans et al., 2014) and raster

(Hijmans, 2014) packages. The first step was to generate 17

habitat predictors (Table 1) for the study area on a 131-m grid

(Du Preez, 2015; Esri, 2017; Jenness, 2015; Roberts et al.,
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2010). These 17 predictors and the tools used to generate them

are listed in Table 1. Twelve of these predictors were derived

from the multispectral MBES dataset, including nine from the

depth data describing the topography of the seafloor and three

from the backscatter data at the 100, 200, and 400-kHz

frequencies. Four predictors described the geography (e.g.,

latitude, longitude, and distance and direction to shoreline)

were generated as proxies to account for the spatial variation in

benthic habitats that was not explained by the MBES

predictors (e.g., by local oceanography, ecology, or human

activities). One temporal predictor was used to determine

whether there were systematic biases between the two years

the input datasets were collected and whether these differences

affected the ability to characterize benthic habitats in the

basin. Three predictors (i.e. depth uncertainty, rugosity, and

distance to shore) were removed from the modeling process

because they were found to be highly correlated (Spearman

Rank r � 0.9 or r ��0.9) with other predictors.

The second step in the process was to create a table

combining benthic habitat information (from underwater

photos) with predictor datasets, and use this input table to

develop habitat models and spatial predictions (Figure 2, Step

2). A total of 3600 models were created by testing 15 parameter

combinations (n¼ 15) (Table 2) for each habitat type (n¼ 12)

and each response variable (n ¼ 2) by k-fold cross validation

(kCV, k¼ 10). Response variables described the percent cover

(in a 1 3 1-m area) and probability of occurrence (i.e. the

likelihood that a habitat is present) for each habitat type.

Model performance was measured with percent deviance

explained (PDE), Pearson correlation coefficients, and area

under the curve (AUC) averaged across the 10 folds. Models

failed to converge for five habitat types, including Shell, Algae,

Sponges, Worms because these habitats were rare (prevalence

,10%) (Liu et al., 2005; Manel, Williams, and Ormerod, 2002).

The model for Anemone abundance converged, but it contained

artifacts from the distance to shoreline predictor, reducing its

utility for the research questions posed here. These five habitat

types were consequently excluded from further analysis. The

seven best performing models (i.e. models with the highest kCV

PDE) were selected for the remaining three substrate and four

cover types. These selected models were used to predict the

probability of occurrence for three habitats (i.e. Rock, Clams,

Limpets) and predict the percent cover for four habitats (i.e.

Cobble, Mud, Bare, Urchins). They were rerun for each habitat

100 times (by bootstrapping) to create 100 separate predictions.

These predictions were used to compute the mean and

precision (coefficient of variation) for each habitat type.

Coefficient of variation (CoV) is a measure of model precision

representing the standard deviation as a proportion of the

mean (Leathwick et al., 2006). Larger CoVs indicate lower

precision and higher uncertainty associated with the spatial

prediction.

Describing Habitat-Environmental Relationships with
Multispectral Data

After the habitat models and predictions were developed, the

third and last step in the process (Figure 2, Step 3) was to

quantify the relationships between these benthic habitats and

their environment, including multispectral backscatter. This

analysis included ranking the predictors by their importance to

the modeling process and describing important thresholds for

habitats along relative acoustic gradients. It is important to

point out that the intent here was not to explain the direct

environmental condition(s) or underlying ecological mecha-

Figure 2. Diagram depicting steps in modeling process to predict seven habitat types in Bedford Basin.
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nism(s) driving benthic habitat distributions. Rather, it was to

help answer the four primary research questions including: (1)

How much (%) does multispectral backscatter improve the

ability to characterize benthic habitats? (2) Do some habitat

classifications benefit more than others? (3) How important is

multispectral backscatter compared with other well-studied

information about the seafloor (e.g., depth, slope, rugosity,

etc.)? (4) What relative acoustic thresholds may be ecologically

important and relevant to management actions and outcomes?

The relative importance of each predictor was quantified by

calculating the number of times it was used in a model and

weighted by how much it improved the model (Elith, Leath-

Table 1. The environmental predictors, including multispectral backscatter, used to develop habitat predictions and maps in Bedford Basin. Year was

included to determine whether decibels were systematically biased or offset between the two years the input datasets were collected and whether these

differences affected the ability to map benthic habitats in the Basin reliably. Other variables (e.g., oceanographic, ecological, anthropogenic, etc.) were excluded

from the models because they were beyond the scope of this research.

No. Group Predictor Units Description Software Tool

1 Multispectral Backscatter (100 kHz) dB Backscatter at 100-kHz frequency.

Values are relative because the

MBES system was not calibrated.

Fledermaus FMGT (QPS, 2018)

2 Backscatter (200 kHz) dB Backscatter at 200-kHz frequency.

Values are relative because the

MBES system was not calibrated.

Fledermaus FMGT (QPS, 2018)

3 Backscatter (400 kHz) dB Backscatter at 400-kHz frequency.

Values are relative because the

MBES system was not calibrated.

Fledermaus FMGT (QPS, 2018)

4 Topographic Arc-chord Unitless ratio Contoured area of the surface divided

by the area of the surface

orthogonally projected onto a plane of

best fit.

ArcGIS ACR Rugosity Toolbox

(Du Preez, 2015)

5 Plan curvature Radians/m Curvature of surface perpendicular to

the direction of the maximum slope.

Surface can be convex (�), concave

(þ), or flat (0).

ArcGIS DEM Surface Tools

(Jenness, 2015) Curvature Tool

6 Profile curvature Radians/m Curvature of surface parallel to the

direction of the maximum slope.

Surface can be convex (�), concave

(þ), or flat (0).

ArcGIS DEM Surface Tools

(Jenness, 2015) Curvature Tool

7 Total curvature Radians/m2 Curvature of the seafloor. Seafloor can

be convex (�), concave (þ), or flat (0).

ArcGIS DEM Surface Tools

(Jenness, 2015) Curvature Tool

8 Depth m Water depth. Fledermaus D-Magic (QPS, 2018)

9 Depth uncertainty† m Uncertainty (International

Hydrographic Organization Order 1)

associated with water depth.

Fledermaus D-Magic (QPS, 2018)

10 Rugosity† Unitless ratio Ratio of surface area to planar area.

The higher the number, the bumpier

the seafloor.

ArcGIS DEM Surface Tools

(Jenness, 2015) Calculate

Surface Ratio Raster Tool

11 Slope Degrees Maximum rate of change in depth. ArcGIS Slope Tool (Esri, 2017)

12 Slope rate of change Degrees Maximum rate of change in slope. ArcGIS Slope Tool (Esri, 2017)

13 Geographic Longitude (x) m Easting in Bedford Basin. ArcGIS MGET Toolbox (Roberts

et al., 2010) Create X

Coordinate Raster Tool

14 Latitude (y) m Northing in Bedford Basin. ArcGIS MGET Toolbox (Roberts

et al., 2010) Create Y

Coordinate Raster Tool

15 Distance to shoreline† m Euclidean distance to the shoreline. ArcGIS Euclidean Distance Tool

(Esri, 2017)

16 Direction to shoreline Degrees Direction to the closest shoreline. ArcGIS Euclidean Direction Tool

(Esri, 2017)

17 Time Year — Year the MBES data were collected. ArcGIS Reclassify Tool (Esri,

2017)

†Predictor removed from modeling process because it was highly correlated (Spearman Rank r � 0.9 or r � �0.9) with other predictors.

Table 2. Model parameters tested to develop habitat predictions and maps in Bedford Basin.

Model Parameter Values Tested Description Impact

Learning rate (lr) 0.01, 0.001, 0.005 Determines contribution of each tree to the

growing model

Decreasing (slowing) lr increases the no. of trees

required for optimal prediction.

Tree complexity (tc) 2, 3, 4, 5, 10 Controls how many predictor interactions are

fitted in a tree

Decreasing tc will shrink the size (no. of nodes) in

a tree.

Bag fraction (bf) 0.75 Controls proportion of data randomly selected to

build each tree

Decreasing bf will reduce the no. of points

randomly used to build a tree.
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wick, and Hastie, 2008; Friedman, 2001; Friedman and

Meulman, 2003). The relative score for each predictor was

scaled so the sum added up to 100. Higher numbers indicated

that the predictor was more important and more useful for

explaining the spatial distribution of habitats. In addition to

rankings, important predictor thresholds were identified by

response curves (also known as partial dependence plots). They

were created for each habitat model and for the 100, 200, and

400-kHz backscatter predictors. Response curves show the

effect of a predictor on the habitat prediction after accounting

for the average effects of all other predictors in the model

(Elith, Leathwick, and Hastie, 2008). They describe the

distribution of habitats along an environmental and acoustic

gradient and can provide a useful basis for interpretation

(Friedman and Meulman, 2003; Hosmer and Lemeshow, 2000).

RESULTS
Seven habitats were successfully modeled and mapped with

multispectral MBES data in Bedford Basin. Agreement

between the field data and habitat predictions suggest that

models were able to describe the relationships among the

benthic habitats and predictors well. Specifically, the perfor-

mance of the seven habitat models (Figures 3–9, panel a) was

considered good to excellent on the basis of three evaluation

metrics calculated by kCV) For all the models, kCV PDE

ranged from 18.1% to 65.7% (x̄¼47.7% 6 6.3). The Bare model

had the highest kCV PDE, and the Cobble model had the lowest

kCV PDE (18.1%). The kCV correlation coefficient values were

also moderate to high for all models, ranging from 0.55 to 0.89

(x̄ ¼ 0.80 6 0.05). The Limpets model had the highest kCV

correlation coefficient (0.89), and the Clams model had the

lowest kCV correlation coefficient (0.55). AUC was also

calculated for the probability of occurrence models, describing

their ability to distinguish correctly between the presence and

absence of habitats. AUC values for these models ranged from

good (0.89) to excellent (0.94) (x̄ ¼ 0.93 6 0.02) (Hosmer and

Lemeshow, 2000). The Rock and the Limpets models had the

highest kCV AUC (0.94), and the Clams model had the lowest

kCV AUC (0.89). The average precision (CoV) of these models

ranged from 0.06 to 1.44 (x̄¼0.68 6 0.18). The Bare model had

the highest precision (0.06 6 0.002), followed by the Mud model

(0.15 6 0.01), the Cobble model (0.45 6 0.03), the Urchins

model (0.67 6 0.03), the Clams model (0.75 6 0.02), the

Limpets model (1.24 6 0.04), and the Rock model (1.44 6 0.06).

These findings align with previous research (Cuff, Anderson,

and Devillers, 2009; Hughes-Clarke, 2015; Kist, 2017), sug-

gesting that multispectral data can be used successfully to

predict and accurately map the distribution of benthic habitats.

Key Thresholds for Multispectral Backscatter
The multispectral backscatter response curves (Figures 3–9,

panel b) identified several important relative thresholds for

distinguishing among benthic habitats. The multispectral

backscatter thresholds were consistent across the substrate

models. Specifically, for the Rock and Mud models, the �16,

�20, and �23-dB thresholds were important at the 100, 200,

and 400-kHz frequencies, respectively. The same thresholds

were important for the Cobble model at the 100-kHz frequency.

However, no threshold was identified at the 200 and 400-kHz

frequencies because they did not contribute notably (,0.4%) to

the Cobble model. Although these threshold values were

consistent, they marked a change in the directionality of the

predicted response for hard vs. soft substrates. Specifically, the

predicted response for the Rock and Cobble models increased

when backscatter values were greater than�16,�20, and�23

dB at the 100, 200, and 400-kHz frequencies, respectively. For

Figure 3. Predicted probability of occurrence for the Rock habitat. (a) Rock habitat (inset) and a map denoting its observed presence and absence and predicted

probability of occurrence. (b) Multispectral backscatter response curves associated with this prediction.
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the Mud model, this trend was reversed, and the predicted

response increased when backscatter values were below these

thresholds (i.e. ,�16,�20,�23 dB). These results suggest that

there are discrete, frequency-dependent backscatter thresholds

for distinguishing among different substrate types. However,

the exact decibel values for these thresholds may differ for

other MBES systems, geographic areas, or both, because these

backscatter values are relative.

These same two patterns were visible in the response

curves for the biological cover models. Specifically, the

thresholds for the biological cover models were also consis-

tent across the modeling group and were almost the same (62

dB) as the substrate model thresholds. For the Bare, Limpets,

and Urchins models, the �15, �20, and �23-dB thresholds

were important at the 100, 200, and 400-kHz frequencies,

respectively. For the Clams model, the�15-dB threshold was

Figure 4. Predicted percent cover of the Cobble substrate. (a) Cobble habitat (inset) and a map denoting its observed and predicted percent cover. (b)

Multispectral backscatter response curves associated with this prediction.

Figure 5. Predicted percent cover of the Mud substrate. (a) Mud habitat and a map denoting its observed and predicted percent cover. (b) Multispectral

backscatter response curves associated with this prediction.
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important at the 100-kHz frequency. No thresholds were

identified at the 200 and 400-kHz frequencies because they

did not contribute notably (0.8%) to the Clams model. Also, as

for the substrate models, these acoustic thresholds denoted a

change in the directionality of the predicted response for the

biological communities most commonly associated with hard

and soft substrates. Specifically, the predicted response for

the Limpets, Clams, and Urchins models increased for

backscatter values .�15, �20, and �23 dB at the 100, 200,

and 400-kHz frequencies, respectively. These biological

communities were most commonly associated with hard

substrates (Rock and Cobble) in Bedford Basin (Figure 10;

Spearman rank q¼0.58–0.99, p � 0.00). For the Bare model,

this trend was reversed, and the predicted response

increased when backscatter values were below these thresh-

olds (i.e. ,�15,�20, and�23 dB). Bare substrates were most

Figure 6. Predicted probability of occurrence for Clams. (a) Clam habitat (inset, black arrows) and a map denoting its observed presence and absence and

predicted probability of occurrence. (b) Multispectral backscatter response curves associated with this prediction.

Figure 7. Predicted probability of occurrence for Limpets. (a) Limpets habitat (inset, black arrow) and a map denoting its observed presence and absence and

predicted probability of occurrence. (b) Multispectral backscatter response curves associated with this prediction.
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commonly associated with mud in Bedford Basin (Figure 10;

Spearman rank q¼0.71, p� 0.00). These results suggest that

there are discrete, frequency-dependent backscatter thresh-

olds that can help distinguish among biological communities

commonly associated with hard and soft substrates. Howev-

er, the exact decibel values for these thresholds may differ for

other MBES systems, geographic areas, or both, because

these backscatter values are relative.

Relative Importance of Multispectral Backscatter
Certain predictor groups were more important for charac-

terizing hard vs. soft substrates (Figure 11). Specifically, the

topographic predictors were the most important group for

characterizing hard-bottom habitats and the most important

group overall. These predictors contributed an average of

49.0% 6 1.6 to all habitat models and 51.8% 6 4.0 to the hard-

bottom habitat models alone. The multispectral backscatter

Figure 8. Predicted percent cover of Urchins. (a) Urchin habitat (inset, black arrows) and a map denoting its observed and predicted percent cover. (b)

Multispectral backscatter response curves associated with this prediction.

Figure 9. Predicted percent cover of the Bare substrate. (a) Bare habitat (inset) and a map denoting its observed and predicted percent cover. (b) Multispectral

backscatter response curves associated with this prediction.
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predictors were tied for second with the geographic predictors,

contributing an average of 25.4% 6 5.4 and 25.6% 6 3.9 to the

habitat models and 20.8% 6 4.9 and 27.5% 6 4.5 to the hard-

bottom models, respectively. However, multispectral backscat-

ter was the most important predictor group (46.9%) for the

Bare habitat model. This habitat model was highly correlated

with the Mud prediction and was the only prediction for which

all the backscatter frequencies (i.e. 100, 200, and 400 kHz) had

similar relative rankings (11.7%, 17.0%, 18.2%). The Bare and

Mud predictions also had the highest precision (i.e. the lowest

amount of uncertainty) associated with them (Figures 5a and

9a). These results suggest that multispectral backscatter is less

important than the topographic predictors for mapping hard-

bottom habitats, but it is highly important for characterizing

soft-bottom habitats with high precision.

Although multispectral backscatter was not the top predictor

group for hard-bottom habitats, certain acoustic frequencies

were consistently ranked highest at an individual level.

Specifically, 100-kHz backscatter was the most important

backscatter predictor overall, explaining an average of 15.1%

6 4.0 for hard-bottom habitats and 19.4% 6 0.9 for soft-bottom

habitats. It was also ranked highest for four habitat models,

including Rock, Mud, Bare, and Limpets. This frequency was

more consistently important than any other individual topo-

graphic, geographic, or temporal predictor, except depth. This

pattern is in contrast to the relative importance of backscatter

at the 200 and 400-kHz frequencies. These backscatter

frequencies were relatively unimportant to most habitat

models, contributing an average of 4.8% 6 1.3 and 4.3% 6

2.1, respectively. As mentioned above, the one exception was

the Bare model, wherein all three frequencies (i.e. 100, 200, and

400 kHz) had similar relative rankings (11.7%, 17.0%, and

18.2%). This trend suggests that these additional frequencies

(e.g., 200 and 400 kHz) have utility for mapping Bare Mud

habitats, but they may have limited utility for mapping the

other habitat types examined here. The 100-kHz frequency

might be a better choice (than 200 or 400 kHz) for character-

izing the full mosaic of hard- and soft-bottom habitats across

the seascape.

DISCUSSION
The research presented here was designed to answer four

primary research questions: (1) How much (%) does multispec-

tral backscatter improve the ability to characterize benthic

habitats? (2) Do some habitat classifications benefit more than

others? (3) How important is multispectral backscatter com-

pared with other well-studied information about the seafloor

(e.g., depth, slope, rugosity, etc.)? (4) What acoustic thresholds

may be ecologically important and relevant to management

actions? These questions were explored with seven high-

performing habitat models generated from multispectral data

in Bedford Basin, Canada (Figures 3–9, panel a). This technical

communication was designed to help marine researchers and

managers begin to make more informed decisions a priori

about the backscatter frequency (or frequencies) that are

potentially best suited to support their research objectives,

mapping needs, and management actions.

Key Relative Thresholds for Multispectral Backscatter
Hard- and soft-bottom maps are often critical baseline

products for many resource managers making decisions about

ocean and coastal resources (Cogan et al., 2009). This analysis

showed that in Bedford Basin, multispectral backscatter was

useful for distinguishing between hard and soft substrates and

Figure 10. Spearman rank correlations among substrate and biological cover types. Blue circles denote habitat types that were positively correlated, and red

circles denote habitat types that were negatively correlated. Stronger correlations are denoted by larger circles and darker colors. Correlation coefficients and p

values are reported for the highest, positive correlation for each substrate-biological cover pair. Circles with an ‘‘x’’ denote habitat types that were not

significantly correlated.
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associated biological communities. Specifically, three acoustic

thresholds were consistently identified for the 100, 200, and

400-kHz frequencies for all habitat models. These relative

thresholds were�15,�20, and�23 6 2 dB, respectively. These

frequency-dependent thresholds were useful to the habitat

characterization process here because they provided clear,

acoustic dividing lines between hard and soft substrates and

associated biological communities. Above (,) these thresholds,

the seafloor was reliably mapped as hard substrates (Rock,

Cobble) with hard-bottom–associated biological communities

(Limpets, Clams, and Urchins). Below (.) these thresholds, the

seafloor was consistently characterized as soft substrates

(Mud) with little biological cover (Bare).

These acoustic thresholds align with other multispectral

backscatter research in similar temperate environments.

Specifically, this research has shown that for the same habitat

Figure 11. Relative importance of the environmental predictors used to develop the habitat models and predictions. Circle size is proportional to a predictor’s

relative importance averaged across 100 model iterations. The larger the circle, the more important the predictor. The gray numbers next to each circle denote

their specific relative importance value.
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type, backscatter responses are frequency dependent and differ

by 63–5 dB between octaves (i.e. 100 vs. 200 kHz or 200 vs. 400

kHz) (Hughes-Clarke, 2015). In addition to identifying thresh-

olds, backscatter values were found to be generally higher (þ)

for lower frequencies (e.g., 100 kHz) and lower (�) for higher

frequencies (e.g., 400 kHz) (Brown et al., 2019; Gaida et al.,

2018; Hughes-Clarke, 2015). These same acoustic patterns

were seen in Bedford Basin, where frequency-dependent

backscatter values differed by 3–5 dB over Bare Mud habitats

(Figure 12). Backscatter values for the three frequencies

converged and became similar over the rocky and cobbly

habitats. These similarities explain why the 200 and 400-kHz

frequencies did not contribute notably to the Cobble or Clams

model. They also aligned with findings from Gaida et al. (2018),

which noted that the 100, 200, and 400-kHz responses diverged

noticeably when sediments transitioned from or to Mud (grain

size¼4.5 /) (Gaida et al., 2018). This divergence was a function

of how deep the acoustic signal penetrated the seafloor.

Relative Importance of Multispectral Backscatter
Although multispectral backscatter might be useful for

dividing hard and soft habitats, these results suggest that it

is less important for characterizing hard-bottom habitats

compared with soft-bottom habitats. For hard habitats, other

commonly collected and derived information about the seafloor

(e.g., depth, slope, etc.) was more important to the character-

ization process than multispectral backscatter. Specifically, the

topographic predictors were the most influential group for

hard-bottom habitats, contributing an average of 51.8% 6 4.0.

Depth contributed the most overall (i.e. 24.6% 6 7.0) to the

hard-bottom models. Conversely, the three backscatter fre-

quencies contributed a combined average of 20.8% 6 2.0 to the

hard-bottom models, which is approximately the same amount

as depth alone. When looking at only two frequencies, the 100/

200-kHz (18.5% 6 2.6) and 100/400-kHz (17.4% 6 4.9) pairings

explained similar amounts of variation, but more variation in

habitat distributions than the 200/400-kHz (5.7% 6 1.9)

pairing.

Overall, the 100-kHz frequency emerged as the most

important of the three frequencies, explaining an average of

15.1% 6 4.0 for hard-bottom habitat models. The 200 and 400-

kHz frequencies contributed the least to the hard-bottom

models, averaging 3.4% 6 1.1 and 2.3% 6 0.8, respectively.

Figure 12. Comparison of backscatter from 100, 200, and 400-kHz frequencies along a transect (black dotted line). The 100, 200, and 400-kHz backscatter values

along this transect are depicted below. The backscatter values for these three frequencies differ the most on Bare Mud habitats and deviate the least on Cobble

with Clams.
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These 200 and 400-kHz contributions are less than the average

contribution of other easily derived information, like slope

(11.0% 6 2.5) or longitude (10.3% 6 3.4). These results suggest

that multispectral backscatter may not be needed for projects

focused on characterizing hard bottom, because the addition of

the 200 and 400-kHz frequencies improved the models by 5.7%.

Researchers and managers should consider whether this

additional explanatory power is important enough to make

multispectral backscatter a priority. If it is not a priority,

MBES systems operating at or near 100 kHz may be a suitable

choice for projects focused on broadly characterizing hard-

bottom habitats in temperate environments.

Although multispectral backscatter may not be needed for

every project, its inclusion here enhanced the ability to

characterize soft-bottom habitats, particularly Bare Mud

habitats. The combination of the three acoustic frequencies

explained 73.7% of the variation in these two soft-bottom

models. The addition of the 200 and 400-kHz frequencies

improved the ability to characterize soft-bottom habitats by

17.4%. The 100/400-kHz pairing explained the most about

variation (28.7%) in habitat distributions, followed by the 100/

200 and 200/400-kHz pairings. These findings are similar to

those of Hughes-Clarke (2015) and Gaida et al. (2018) for

Bedford Basin, which found that the 100/400-kHz pair

contained more information about seafloor habitats than other

frequency pairings. These additional frequencies also helped

decrease the uncertainty associated with the Mud and Bare

predictions, making these models three times more precise

(CoV ,0.15 vs. .0.45) than the other habitat predictions. In

places like Bedford Basin, this additional information and

reduction in uncertainty can be critical, because .90% of the

survey area was classified as Bare Mud. This finding aligns

with in situ grain size sampling and analysis by Brown et al.

(2019) in the same survey area. Outside of Bedford Basin, this

result suggests that multispectral backscatter might be more

useful and effective for projects focused on mapping and

characterizing soft-bottom habitats and associated biological

communities. For example, finding bare sand or mud is of

critical importance to a number of marine management

applications, from siting marine infrastructure (like wind

turbines) (Multon, 2013) to shoreline protection and beach

nourishment (Finkl, Khalil, and Andrews, 1997; Finkl and

Walker, 2005).

Potential Effect of Relative Backscatter Values
Although the above findings align with previous research, it

is important to discuss the potential effect of relative

backscatter values on their interpretation and applicability

more broadly. As described earlier, the backscatter values for

this study were calibrated across survey years. This created

relative backscatter surfaces for each frequency in the study

site. A temporal predictor was included in the modeling process

to validate this relative calibration, identify areas on the

seafloor that may have changed over time, and better

understand whether these coupled issues affected the ability

to characterize benthic habitats. These results showed that this

temporal predictor had zero importance for model develop-

ment, suggesting that the two collections were properly

intercalibrated and that habitat changes were minimal

between 2016 and 2017. These results were in agreement with

Gaida et al. (2018), who created two separate benthic habitat

maps with the same 2016 and 2017 multispectral data for the

same geographic area inside Bedford Basin. When Gaida et al.

(2018) compared the two maps, they found them to be nearly

identical, suggesting that backscatter values for the two

surveys were similar and that soft- and hard-bottom habitats

remained relatively unchanged between years. The one

exception was an area to the NW in the study area, where

low backscatter returns were visible in the 400-kHz surface in

2016 and high backscatter returns in the 400-kHz surface in

2017 (Gaida et al., 2018). This seafloor change was captured by

the modeling process used here and was predicted to have a

lower percent cover of Bare Mud compared with the surround-

ing seafloor.

Although relative backscatter may have had little effect on

the habitat predictions themselves, it is important to acknowl-

edge that the acoustic thresholds identified above are specific to

this study. They are unique to this study because the absolute

decibel values (i.e.�15,�20, and�23 dB) would most likely shift

if this approach were applied to other multispectral backscatter

datasets collected in different geographic areas, using different

MBES systems, or both. This change prevents these specific

decibel values from being interpreted and applied more

broadly. However, these thresholds (relative to each other)

still have some utility beyond this study site because they are

grounded in the physics of acoustics and capture changes in

backscatter strength as a function of incident angles and

sediment types (Gaida et al., 2018). They also align with

previous research showing that backscatter responses depend

on frequency and that backscatter returns are generally higher

(þ) for lower frequencies (e.g., 100 kHz) and lower (�) for higher

frequencies (e.g., 400 kHz) (Brown et al., 2019; Gaida et al.,

2018; Hughes-Clarke, 2015). They also confirm findings from

other studies that show backscatter responses differ by 63–5

dB between octaves (i.e. 100 vs. 200 kHz or 200 vs. 400 kHz)

(Hughes-Clarke, 2015). Combined, this information is a step

toward better understanding acoustic dividing lines between

hard and soft substrates and associated biological communities

and toward better understanding the utility of multispectral

backscatter overall.

CONCLUSIONS
Acoustic backscatter, particularly from MBES, is often a key

piece of information for producing accurate, high-quality

benthic habitat maps for marine managers (Holliday, 2007;

Smith and McConnaughey, 2016). Recent advances in MBES

systems now allow the collection of spatially and temporally

coincident multispectral backscatter. The work presented here

used a case study to better understand the utility of this new

type of data for benthic habitat mapping and potential marine

management applications. These results from Bedford Basin

indicate that multispectral backscatter data (particularly the

100/400-kHz paring) can enhance discrimination among soft-

bottom habitats by 17.4% but is less important for mapping and

characterizing hard-bottom habitats (5.7%). Consequently,

multispectral backscatter might be most effective for support-

ing management applications that need soft-bottom maps, such

as beach nourishment and coastline protection projects. Single-
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frequency (i.e. 100-kHz) backscatter might be adequate for

other management applications that require comprehensive

maps of hard- and soft-bottom habitats on the seafloor (e.g.,

protecting essential fish habitats). Although these results are

interesting, the work presented here is a small first step toward

quantifying the utility of multispectral backscatter. Future

research should focus on understanding whether these pat-

terns and acoustic thresholds change when multispectral

MBES backscatter is calibrated absolutely in situ and whether

these patterns hold true in other geographic locations and

types of marine ecosystems. Continuing to better understand-

ing the utility of multispectral data would help researchers and

marine managers make more informed decisions a priori about

the backscatter frequency (or frequencies) best suited to their

mapping needs, research objectives, and desired management

outcomes.
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